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An s/z hybrid model for a general phase-locked loop is proposed in this article. The
impact of the loop filter on the stability, gain margin, noise-equivalent bandwidth, steady-
state error and time response is investigated, A specific digital filter is selected which
maximizes the overall gain margin of the loop. This filter can have any desired number of
integrators. Three integrators are sufficient in order to track a phase jerk with zero
steady-state error at loop update instants. This filter has one zero near z = 1.0 for each
integrator. The total number of poles of the filter is equal to the number of integrators

plus two.

[. Introduction

In this article, the impact of a general digital filter on the
gain margin, noise-bandwidth, steady-state error and tran-
sient response of a digital phase-locked loop is investigated.
For the proposed s/z-domain model of a digital phase-locked
loop, a wide variety of digital filters was investigated by anal-
ysis and by simulation.

A specific type of filter is suggested which has the prop-
erty of having one zero for each filter integrator. The total
number of poles of this filter equals the number of integrators
(poles at z = 1) plus two. All loop poles are forced to remain
on or near the real axis for the maximum possible range of
loop gain. The loop remains stable with any number of inte-
grators. The noise bandwidth increases slightly with the num-
ber of integrators. Gain margin and transient response are
almost insensitive to the number of integrators.

The proposed type of filter allows tracking very high Dop-
pler rates with zero steady-state error (at loop update
instants).

Il. Loop Components

The basic components of our digital loop (see Fig. 1) are:
(a) an integrate-and-dump circuit, which alsc serves as an
analog-to-digital converter, (b) a digitally controlled oscillator
(DCO), which also serves as a digital-to-analog converter, and
(c) a loop filter. These components are modeled in the hybrid
s/z domain as follows:

(a) Integrate-and-dump (According to Ref. 1):

16,2) = S8 = g2 22 o
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(b) DCO!:
D(s, z) = 6(s) 1 ~exp2(- sT) 1-z1 @
d(Z) s s2
(¢) Loop Filter:
F(Z) =:Q= (l—Z Z—l)(l_zzz_l)...(l-ZmZ—l)
€(z) (1 bz 1)(1—p2z"1)_”(1_pnz—1)
(3)
where

G, represents the combined gain of the phase detectors,
and other loop components and is proportional to the
power of the input signal.

T is the loop update time
{z,} are the zeros of the loop filter
{,} are the poles of the loop filter
In the actual implementation of the loop filter, there is a
time delay between the instants the error signal ¢; is read and

the estimated phase rate 6 is computed. This t1me delay is
modeled as

z)
T(s) =——= exp(— ng) 4)
8(z)
where 0 < g < 1.0 is the normalized time delay
T
= £
8= (5)

The term T, is the computation time, and gd(z) is (3(2)
delayed by T, seconds.

Referring to Fig. 1, we see that

X(@) = ¢(S) Bgs) - é'\(z) [1 -exp (-sT)] E’ﬂ;"_}gﬂ

(6

1The DCO can be madeled as a Digital-to-Analog converter for which
the transfer function is

E\_(S_)_‘ _1-exp (=sT)
§4@ s

Multiplying this by 1/s converts é'\(s) ) (s).
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Taking the z transform of Eq. (6), we obtain?

o 4 - 4

T2 (-8 +(1+2g-28")z+g%) 5

2 z(z - 1)% G(Z)

(M

where the asterisk denotes the z transform of the expression
inside the parentheses. Equation (7) has the block diagram
representation of Fig. 2. Using the above equation, together
with Eqgs. (1) and (3), the open-loop transfer function is

ne>

?_<_>) %@
G(z) (S (ﬂs_))* XG)
s

(2
(*+Cz+C))

= Ge———-"_F
ETR (2) (8
where
G T?
G=—2— (-9 ©

is the effective loop gain

= (1+2¢-28")/(1-g) (10)
C, =& /(1-8)? (11)
Using Eq. (8), the closed-loop transfer function will be
A 6,(2) _ 6@ 12
Gy 11O

lil. Selection of the Loop Filter

In general, a digital filter can be expressed by the following
difference equation.:

n
6, = Z a] (13)
j=

i-j Z By
2In general, given a function L (s), we always have-

*
[exp (-5gT) L (5)] BL@Em) m=1-g

where L (z, m) is the modified z transform of L (s). This technique is
used to obtain Eq. (7) from Eq. (6).




The direct form I realization of this filteris shown in Fig. 3.
Figure 4 depicts the same filter in the direct form II realiza-
tion. The transfer function corresponding to Eq. (13) is

“~ ~1 -2 ~-m
Fz) = () _ Bo+Byz7 +B,27 ... B2 (14)
&(z l-azt-az2?.. . az"
. 2,

which can be factored into the pole-zero representation of
Eq. (3).

With 8, = 1 and m < n, Eq. (14) can be rewritten as
follows:

(zm +Blzm—1 + ... am) Zn-m

F(z) = (15)

n n-1
z -alz sl

_ (z-2,)(z-2,)...(z~2,)2"™

(z-p)(-p,)...(z-p,)

(16)

This filter will always have r poles and » zeros, such that n - m
of the zeros will be at z = 0.

The filter controls the following four main parameters of
the phase-locked loop:

(1) Gain margin

(2) Noise-equivalent bandwidth

(3) Steady-state error

(4) Transient response
The selection of proper values for z; and p, is dictated by the
necessity of optimizing the above loop parameters. In what
follows, we will address each optimization criterion indi-
vidually.
A. Stability and Gain Margin

Inserting Eq. (16) in Eq. (8) and using Eq. (12), the closed
loop transfer function with an #th order filter is

Giz-z,)(z-2,)(z~2,)(z~2,)...(z-2,)z" "

H(z) = > -
2E-1)E-2,)E-p,)...(¢-D,)

)

+G(z-2,)(z-2,)(@~2)(@z-2,)...(z-2,)2""

Here z, and z,, are the roots of (22 + C,z.+ C,) in Eq. (8).
These two zeros result from nonzero computation time. For

example, assuming that g = 0.5 (a compﬁtation time of half
an update time), then z, = -0.1716 and z,, = -5.8283.

For the effective loop gain G changing from G= 0 to G = ¢e,
the poles of H(z) will move starting at the location of the
open-loop poles, p,, of G(z) and ending at the location of the
open-loop zeros, z,, of G(z). The loop will be stable when all
the poles of H(z) are inside the unit circle in the complex
z-plane. Thus, in order to increase the gain margin, given that
other constraints are met, we want to place all z,’s and p,’s
such that the range of G that maintains a stable loop is
maximum.

In order to track high Doppler rates with zero or minimum
steady-state error, the loop should have 2 or more integrators,
i.e., open-loop poles at z = 1.0. For stability, we want these
poles to move inside the unit circle with increasing G. The
closer the zeros are to the point z = 1.0, the faster the poles at
z = 1.0 will move inside the unit circle. Since here all gains and
loop parameters are controlled digitally, there is no danger of
instabilities due to drifts of gain values as is the case with ana-
log loops. However, it should be checked that any quantiza-
tion and truncation errors will not produce undesirable fluc-
tuations in the locations of z; and p,.

Performing a root-locus analysis and simulation revealed
that the range of allowable G values increases when the poles
are forced to stay longer on the real axis. A rule of control
theory states that the root locus on the real axis always lies
in a section of this axis to the left of an odd number of poles
and zeros. Figure 5 illustrates some root locus diagrams with
the number of integrators, N, in F(z) being a parameter,

Using this simple rule, the minimum number of zeros near
z = 1.0 was determined. For each pole of F(z)at z= 1.0, one
zero is required. These m = N zeros will force the poles at
z = 1.0 to move inside the unit circle as shown in Fig. 5. Note
from Eq. (8) that the system transfer function contributes one
pole at z = 1.0. Thus, the total number of poles at z = 1.0
(integrators) is NV + 1. :

By trial and error, it was found that, with any number of
integrators, the gain margin increases when the open loop
transfer function, G(z) has a minimum number of poles.
Since the transfer function contributes two poles at z = 0
(see Eq. [8]), which try to move quite fast out of the unit
circle when the loop gain is increased, it is desirable to cancel
these two poles with two zeros at the origin. From Eq. (16),
this implies that # - m = 2. Since, from the above, the number
m of zeros not at the origin was selected equal to the number
N of integrators, then the foral number of poles of F(2) is
given by

n=m+2=N+2 (18a)
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and F(z) will be of the form

_ (z-zl)(z—zz)...(z-zN)z2

F(z)
Gz-p)@-p,) -1

(18b)
Finally, using Eq. (18b) in Eq. (8) results in an open loop
transfer function of the desired form, namely

60 = G (z-2)@-2,)(E-2)(-2,)...(-2y)

z-p)@-py) (-1

(18¢)

The order of G(z) will be N + 3, and the degree of its
numerator will be one less than that of the denominator.

The lower bound on the allowable gain G is detexmined by
the proximity of z, to the point z = 1.0. The upper bound on
G is controlled by the locatien of the poles p, and p, since as
G increases these poles move outside the unit circle. By trial
and error, it was found that the poles originating at p, and p,
will stay longer inside the unit circle when p, and p, are
placed on the real axis between z =-1.0 and z = z,,. The maxi-
mum upper bound on G is achieved when p, is very close to
z = -1.0 and p, is very close to z = z,. The root locus of these
two poles is shown in Fig. 5.

Figure 6 illustrates the impact of the location of z, on the
loop gain margin for the case when V= 1.

B. Noise-Equivalent Bandwidth

The closed loop transfer function H(z) of Eq. (17) can be
rewritten as

n+l1 n
B(Z) _bOZ +bIZ +“'+bn+1

H(z) = = (19)
Az n+l
@) g 2" ta st ta
(Our loop has b, =0,4,=1.)
The one-sided noise-equivalent bandwidth is defined as
1 1 15 dz
B, =— — H(z)H(z"") — (20)
L 2TH2(1) 2nf f z
1
=—1 1)
2TH?(1)
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Let
-
[4, 4 2, %p1a
a ayta, 4, ta, a,
2,
an+1 0 0 aO
- _

and Q, be the matrix formed from £ by replacing the first
column of Eq. (22) with

o 1
n+l

2 b

=0

n+1

2 Z bbiiy

=0
n+1

(23)
2 ) by

i=0

Obn+1

L 2b
According to Ref. 2, the integral J,, is equivalent to the

ratio of two determinants as follows:

|2
I = (24)

Using Eqgs. (22), (23) and (24) in Eq. (21), the bandwidth
vs G was calculated for the filters and gain values given in
Table 1, and plotted in Figs. 7-11. For loops which are similar
in their pole-zero location, increasing the number of inte-
grators ini F(z) increases B; . Adding more poles and/or zeros
near z = 0 has an insignificant impact on the bandwidth. The
impact of the location of z; on the bandwidth when V=1 is
shown in Fig. 6. B, was computed for G=G,, . +4 dB.




C. Steady-State Error

The input to our z-domain loop (see Fig. 2) can be ex-
pressed as

(0_@)* 0T
§ B (2_1)2

0,7 2(z% +112° + 11z + 1)
+ +...
4(z - 1)°

0,T% z(zt1) 6, T>2(z* +4z+1)
+
2z-1)° 3z-1)*

(25)

where 8, 62, 63, 6, represent phase step, ramp, acceleration
and jerk, respectively. Higher orders terms are assumed to be
negligible.

The transfer function He(z) is defined as

- 6(2) - GQ (Z ~ ].)
4, (ﬁs_))* E(EXE0) (26)
N

where G(z) is given by Eq. (8) which results in the steady state
error

@7

5s

i ()50

z—1

Let F(z) be of the form in Eq. (18b). Then, inserting
Egs. (25) and (26) in Eq. (27) and simplifying, we obtain

6,7z 8,T% 2(z +1)
€, = lim +
(z - 1)? 2(z-1)°

z—1

0,73 2(z* +4z +1)
3z-1)*

X GQ (Z —pl)(z _pz) (Z - l)N+3

22 [(Z - l)N+1 (Z —pl) (Z _pz)

0,T% (2> +112% + 11z + 1)]
4(z-1)8

(28)
+Glz-2,)(z-2,)(z-2))...(z~2)]

With ¥ = 1, 0, (phase acceleration) will be tracked with
finite steady-state error, but 8, (phase jerk) will generate infi-
nite steady-state error.. With & = 2, 8, will be tracked with
finite steady-state error. With & = 3 the steady-state error due
to phase jerk will be zero. Table 2 lists values of steady-state
error for different values of V. Note that the proximity of z,
to the point z = 1.0 increases the value of the steady-state
error.

Steady-state phdse error, § ., can be readily obtained from
€4, Using the relation

€
¢ = $§ (29)
s G QT
which is equivalent to
e, T - g)*
5s 2G (30)

by using Eq. (9).

D. Transient Response

In general, for a digital loop with a large number of poles
and zeros, it is not easy to calculate the transient response. If,
for some specific gain value, the loop has only two dominant
poles, then the natural frequency, damping ratio and settling
time can be assessed from the second-order loop equations.
Otherwise, an inverse z-transform operation has to be per-
formed on the product of the loop transfer function and the
step input. There are three methods available for this inverse
z-transformation: integration, partial fraction expansion and
long division. In our analysis, we have chosen the last of the
three.

By performing synthetic (long) division on the ratio of
two polynomials in

Gye-1) 0Tz
X
z(1 + G(2)) (z- 1)

e(z) =

= s 1 -2 -3
=€,z tez ez ., (€3]

the time response of the loop with a step input is ebtained at
time £y, #,, ?3, etc. The settling time T is determined when
the magnitudes of ¢; become less than, say, 5% of the initial
value for all #,, t;11» etc. Plots of T, vs G for a loop with filters
specified in Table 1 are shown in Figs. 7-11. As can be seen
from these figures, the settling time increases very sharply
when the two poles on the left portion of the real axis migrate
close to the unit circle (see Fig. 5). The impact of the location
of z; on T for N =1 is shown in Fig. 6.

IV. Conclusion

In this article, a model for a general digital-phase locked
loop is proposed. The impact of a digital filter on the stability,
gain margin, noise-equivalent bandwidth and time response is
investigated. A specific type of digital filter is proposed which,
for any desired number of integrators, has a minimum number
of zeros. The strategy adopted in this analysis in optimizing
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the loop performance with the digital filter consists of two
steps. First, the lower and upper bounds of the allowable loop
gain are obtained by placing the filter’s zeros close to the
point z = 1.0 and the two filter’s poles close to z = ~1.0 and
z = z,. Then, the desired bandwidth and settling time are ob-
tained by selecting the corresponding value for the loop gain.

Table 2 lists steady-state error values vs the number of inte-
grators of the loop filter. Making the number of integrators
equal to 3, the loop can track phase jerk with zero steady-state
error (at loop update instants). Figures 7 through 11 show the
variation of the noise bandwidth and settling time with chang-
ing gain for different loop types.
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Table 1. Proposed placement of poles and zeros for loop filters

Location of Number of Integrators of F(z)
Poles and Zeros
of F(z) 0 1 2 3 4

7, 0.960 0.960 0.960 0.970
z, 0.960 0.930 0.960
2 0.930 0.940
z, 0.940
p, -0.173 -0.173 -0.173 -0.173° -0.173
v, -0.999 -0.99% -0.999 -0.999 -0.999
Py 1.000 1.000 1.000 1.000
P, -1,000 1.000 1.000
Pg 1.000 1.000
)8 1.000

Approximate 0.001 0.001 0.01 0.04 0.04

range of G 0.30 0.30 0.30 0.30 0.30

1F(z) contains also n - m zeroes at z = 0. In our analysisn -~ m = 2.

Table 2. Steady-state ertor signal vs loop type

Steady State Error, ¢ -

Loop _
Type Phase Ramp Phase Acceleration Phase Jerk

1 0,(1-p) (1 -p,) o e

20,T(1~p)) (1-p,)
2 0 o
a —7’1) T2
0 66,7°(1~p)) (1~P2)
3 0
(1-2)) (-2,
4 0 0 0
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